3 Flutes NON-COAT for Aluminum Milling

Size $\boldsymbol{\phi} 1 \sim \boldsymbol{\phi} 12$

Material Applications (\star Highly Recommended \bigcirc Recommended \bigcirc Suggested)

Work Material																	
Carbon Steels S45C S55C	Alloy Steels SK / SCM SUS	Prehardened Steels NAK HPM	Hardened Steels					Cast Iron	Aluminum Alloys	Graphite	Copper	Plastics	$\begin{aligned} & \text { Glass } \\ & \text { Filled } \\ & \text { Plastics } \end{aligned}$	Titanium Alloys	$\begin{gathered} \text { Heat } \\ \text { Resistant } \\ \text { Alloys } \end{gathered}$	Cemented Carbide	Hard Brittle (NonMetallic) Materials
			$\sim 50 \mathrm{HRC}$	$\sim 55 \mathrm{HRC}$	$\sim 60 \mathrm{HRC}$	$\sim 65 \mathrm{HRC}$	$\sim 70 \mathrm{HRC}$										
									\star		\bigcirc	\bigcirc					

Features

Capable of verical milling into a flat surface.
Achieves shorter processing time by removing pre-drilling or ramping cycle.
45° helix angle offers excellent chip evacuation.
The flute shape is specifically designed for reducing burrs on Aluminum Alloys.
The micro flatland design greatly helps control of chipping.

The shank taper angle shown is not an exact value and to avoid contact with the work piece, we recommend the user controls the precise value of this angle. Shank taper angle should not make contact with the work piece.

Diameter Tolerance

Outside Diameter ($\phi \mathrm{D}$)	Tolerance
$\phi 1 \sim \phi 6, ~ \phi 7, ~ \phi 9, ~ \phi 11$	0
	-0.015
$\phi 8, ~ \phi 10, ~ \phi 12$	0

Highly efficient 3 flutes. Significant productivity improvement.

Total 28 models								Unit (mm)
Model Number	Outside Diameter ϕ D	Effective Length ℓ_{1}	Length of Cut e	Neck Diameter $\phi \mathrm{d}_{1}$	Shank Taper Angle Bta	Overall Length L	Shank Diameter $\phi \mathrm{d}$	Suggested Retail Price ¥
AZS 3010-030	1	3	2	0.95	16°	60	4	5,880
AZS 3010-050		5				60	4	6,400
AZS 3015-045	1.5	4.5	3	1.43	16°	60	4	5,880
AZS 3020-060	2	6	4	1.93	16°	60	4	5,880
AZS 3020-100		10				60	4	6,400
AZS 3025-075	2.5	7.5	5	2.4	16°	60	4	7.080
AZS 3030-090	3	9	6	2.9	16°	70	6	7,080
AZS 3030-150		15				70	6	7.700
AZS 3035-105	3.5	10.5	7	3.4	16°	70	6	7.320
AZS 3040-120	4	12	8	3.9	16°	70	6	7.320
AZS 3040-200		20				70	6	8,000
AZS 3045-135	4.5	13.5	9	4.4	16°	70	6	7.920
AZS 3050-150	5	15	10	4.9	16°	70	6	7.920
AZS 3050-250		25				70	6	8.700
AZS 3060-180	6	18	12	5.8	-	70	6	8,280
AZS 3060-300		30				70	6	9,100
AZS 3070-210	7	21	14	6.82	16°	80	8	11.040
AZS 3070-350		35				80	8	12,100
AZS 3080-240	8	24	16	7.82	-	80	8	11.040
AZS 3080-400		40				80	8	12.100
AZS 3090-270	9	27	18	8.82	16°	90	10	13.920
AZS 3090-450		45				90	10	15,300
AZS 3100-300	10	30	20	9.82	-	90	10	13,920
AZS 3100-500		50				90	10	15,300
AZS 3110-330	11	33	22	10.82	16°	110	12	19,560
AZS 3110-550		55				110	12	21,500
AZS 3120-360	12	36	24	11.82	-	110	12	19,560
AZS 3120-600		60				110	12	21,500

Spiral V Cutter
\qquad
Drill
Drill

3 Flutes NON-COAT for Aluminum Milling
Roughing Example A5052

Model Number	Milling Process	Spindle Speed	Z Feed Rate	XY Feed Rate	a_{p}	$a_{\text {e }}$	Cycle Time
$\begin{aligned} & \text { AZS 3100-300 } \\ & (\phi 10 \times E L \text { 30 }) \end{aligned}$	Drilling (1)	6,480 min^{-1}	$180 \mathrm{~mm} / \mathrm{min}$	-	10 mm	-	6 min 35 sec
	Roughing		-	$1,500 \mathrm{~mm} / \mathrm{min}$	10 mm	5 mm	
	Drilling (2)		$180 \mathrm{~mm} / \mathrm{min}$	-	20 mm	-	
	Roughing		-	$1,500 \mathrm{~mm} / \mathrm{min}$	20 mm	5 mm	
$\begin{aligned} & \text { AZS 3030-090 } \\ & (\phi 3 \times E L 9) \end{aligned}$	Drilling + Slotting	14,000 min^{-1}	$145 \mathrm{~mm} / \mathrm{min}$	1,450 mm/min	3 mm	-	30 sec

Coolant : Water Soluble

Pocket Milling Example

Tool	AZS 3060-180 $(\phi 6 \times$ EL18)	
Milling Process	Roughing	Finishing
Spindle Speed	$17,600 \mathrm{~min}^{-1}$	$17,600 \mathrm{~min}^{-1}$
Feed Rate	$3,000 \mathrm{~mm} / \mathrm{min}$	$2,000 \mathrm{~mm} / \mathrm{min}$
a_{p}	6 mm	6 mm
a_{e}	4.8 mm	0.3 mm

Milling from roughing to finishing with 1 pc .

Slotting Comparison of burrs under different conditions

Coolant Water soluble

- Overhang 20 mm

- Feed per tooth fixed at $0.05 \mathrm{~mm} / \mathrm{t}$. Comparison of burrs at different spindle speeds and feed rates.

	Spindle speed (min^{-1})	Feed rate ($\mathrm{mm} / \mathrm{min}$)	Velocity (m/min)	$\begin{gathered} a_{p} \\ (m \mathrm{~m}) \end{gathered}$	Feed per tooth (mm/t)	Milling condition details	Slot wall Down cut side
Condition 1	13,000	2,000	200	$\begin{gathered} 3.75 \\ (0.75 \mathrm{D}) \end{gathered}$	0.05	Spindle speed and feed rate = Catalogue milling conditions	
Condition 2	11,700	1,750	180			Spindle speed and feed rate = 10\% lower than catalogue milling conditions	
Condition 3	10,000	1,500	160			Spindle speed and feed rate $=25 \%$ lower than catalogue milling conditions	some burr
Condition 4	7,700	1,150	120			Spindle speed and feed rate = 40\% lower than catalogue milling conditions	
Condition 5	3,200	480	50			Spindle speed and feed rate $=75 \%$ lower than catalogue milling conditions	Most burfe

No burrs under condition 1, catalogue milling conditions.
As the spindle speed was lowered, burrs began to appear, and the most burrs occurred at the velocity of $50 \mathrm{~m} / \mathrm{min}$ in condition 5 .
At the same feed per tooth, burrs were more likely to occur if the velocity was reduced too much.

- Spindle speed fixed at $10,000 \mathrm{~min}^{-1}$. Comparison of burrs at different feed rates.

	Spindle speed (min^{-1})	Feed rate ($\mathrm{mm} / \mathrm{min}$)	Velocity (m/min)	$\begin{gathered} a_{p} \\ (\mathrm{~mm}) \end{gathered}$	Feed per tooth (mm / t)	Milling condition details	Slot wall Down cut side
Condition 6	10,000	2,000	160	$\begin{gathered} 3.75 \\ (0.75 \mathrm{D}) \end{gathered}$	0.07	Spindle speed 10,000 min Feed per tooth $+30 \%$	
Condition 7		2,400			0.08	Spindle speed $10,000 \mathrm{~min}^{-1}$ Feed per tooth $+60 \%$	

At a fixed spindle speed of $10,000 \mathrm{~min}^{-1}$, burrs slightly increased compared to condition 3 when the feed rate was raised, but there was no significant difference.

